Athletic Performance Toolbox

  • Strength Training
  • Speed and Agility
  • Administration
  • Injury Prevention/Rehabilitation
  • Professional Development
  • Archives

Jump Training: Injury Prevention

July 24, 2017 by

This article was provided by Training and Conditioning

By Dr. Ryan MiznerRyan Mizner, PhD, PT, is an Associate Professor in the School of Physical Therapy and Rehabilitation Science at the University of Montana. He is a past recipient of the Margaret L. Moore Outstanding New Academic Faculty Award from the American Physical Therapy Association. He can be reached at: ryan.mizner@umontana.edu.

With roughly 200,000 instances nationwide each year, ACL tears are an ever-present concern for athletes, coaches, and sports medicine professionals. Despite their frequency, nearly 85 percent of athletes who undergo ACL reconstruction surgery expect to return to their pre-injury level of sports participation. Many point to success stories as the source for these high hopes. A popular example is Minnesota Vikings running back Adrian Peterson, who won NFL MVP honors for the 2012 season that started a mere eight months after his ACL reconstruction.

However, one downside of cases like Peterson’s is that they can spark unrealistic expectations that don’t hold up in the literature. Recent evidence has revealed only half of athletes who tear their ACL will return to their sport following reconstruction surgery. Further, only two-thirds of all patients get back to their preoperative level of physical activity. Even when athletes do return, they still face a high possibility of reinjury, as athletes who have torn their ACLs are 15 times more likely to experience a subsequent tear.

These results have left many wondering: What is the cause of these shortcomings? While the answers are complex, there are two primary factors that deserve attention. The first, and perhaps most common, reason for limited return to sport is psychological, including fear of reinjury or a lack of confidence in the reconstructed knee.

Second, patients often exhibit mechanical deficits in their injured knee that persist for years after surgery. It’s common to see athletes avoid using their repaired knee to cut or control their bodyweight during jump landing. Many also limit bending and joint torque across their knee during these tasks, which inhibits their chances for successful return to sport.

Several years’ worth of biomechanical testing in the Movement Science Lab at the University of Montana suggests these two factors are interrelated. Since most ACL tears occur when an athlete places excessive stress on the ligament during jump landing or cutting, it’s not surprising that these same types of movements can evoke apprehension during recovery.

This brings us to another question: What can be done to help athletes overcome these issues and return to sport successfully? Our desire to answer this question led us to create the Bodyweight Reduction Instrument to Deliver Graded Exercise (BRIDGE) system. As its name implies, the BRIDGE was designed to facilitate the transition for athletes from ACL injury to safe return to sport. Combining unweighting technology via a suspension system and sports-specific jump training, it provides an unrestricted environment where athletes can refine their movement mechanics and build confidence in their injured joint.

NEW APPROACH

Don’t get the BRIDGE confused with common rehabilitation protocols that incorporate high-intensity bodyweight jump training as part of ACL reconstruction recovery. Although both methods recognize the benefit of building proper jump training mechanics, the physical abuse that jumping at full bodyweight puts on the body can be detrimental. For instance, the loads and ground reaction forces on the operated limb are considerable even at low jump heights.

Adding to the issue is newly published research that suggests high-intensity bodyweight jump training during ACL rehabilitation could negatively impact articular cartilage health. These findings are particularly disconcerting, as nearly half of patients who undergo ACL reconstruction will exhibit early signs of post-traumatic knee osteoarthritis within 10 to 15 years of surgery.

And as mentioned, mental factors can further restrict the efficacy of bodyweight jump training. Patients recovering from ACL reconstruction will often self-limit the force borne by their operated knee due to insecurities surrounding its ability to withstand the rigors of landing.

The BRIDGE hangs from the ceiling of the Movement Science Lab on Montana’s campus. It uses 50-foot lengths of elastic tubing stretched out to 150 feet through a pulley system. The tubing ends on a sliding connection that travels across an eight-foot rail in the ceiling.

The BRIDGE system differs from traditional bodyweight jump training because its unweighting environment allows athletes to safely practice sport-specific tasks that may otherwise induce fear, such as jumping, hopping, and cutting. This encourages them to explore new movement patterns with their rehabbing knee in a safe setting. Instead of provoking feelings of apprehension and anxiety common in standard ACL reconstruction programs, athletes who have used the BRIDGE system describe it as fun and exciting.

In addition, the BRIDGE’s bodyweight support provides a natural range of motion and reduces the amount and rate of limb loading during retraining tasks, which allows us to use higher repetitions than the 20 to 120 ground contacts per session range commonly recommended for athletes recovering from ACL tear. The more reps athletes complete, the more likely they are to develop muscle memory and retain good jumping form.

The BRIDGE system is not the only treatment aimed at improving standard bodyweight jump training. Rehab specialists have tried many alternative methods that reduce loads and allow for a greater volume of training, such as upright bodyweight support systems and plyometric leg presses. Yet unlike the BRIDGE, these tools often restrict the area in which athletes can work, limit the athletes’ range of motion, prevent athletes from performing movements at normal speed, and inhibit their ability to interact with the surrounding environment.

MOVING PARTS

So how does the BRIDGE work? Built as a suspension system, it hangs from the ceiling of the Movement Science Lab on Montana’s campus. It uses 50-foot lengths of elastic tubing stretched out to 150 feet through a pulley system. The tubing ends on a sliding connection that travels across an eight-foot rail in the ceiling.

Athletes using the BRIDGE stand under the rail, where the tubing attaches to a custom harness of neoprene shorts. Two nylon straps connect the harness to an aluminum yoke just above the athlete’s head. The straps enable the athlete to smoothly slide back and forth on the yoke during exercise. In total, the BRIDGE allows for movement over 50 square feet on the floor and a vertical space capable of accommodating everything from a lunge to a three-foot vertical leap.

Each tubing element in the BRIDGE carries a different weight load based on its thickness and amount of stretch. The level of unweighting is adjusted by adding or removing tubes to the harness. We can check the amount of bodyweight support provided during training with a miniature load cell placed in the rigging.

Between five to 90 pounds of bodyweight support can be supplied by the BRIDGE. Once the desired load is set, it will not vary more than five percent during training. For example, if a rehabilitation specialist is targeting 20 percent bodyweight reduction for a 200-pound athlete (40 pounds), the system will stay within 38 to 42 pounds for all movements. Such smooth and consistent bodyweight support creates a feeling of reduced gravity.

STRAPPED IN

A typical training session with the BRIDGE lasts about an hour. It begins with an active warm-up on a treadmill and preparatory tasks like high knees, cariocas, etc. Then, athletes strap into the harness, and the rigging is adjusted to the desired amount of unweighting load.

After a brief accommodation period to the day’s bodyweight reduction, athletes will complete 25 to 40 minutes of jump training exercises. Some common movements include stationary or forward triple hops, split jumps, 180-degree repetitive jump turns, broad jumps, hops for distance, and three-step cuts.

When athletes first start training with the BRIDGE, we often see them adopt a stiff leg posture with limited knee flexion during landing because they are unsure of their knee. This increases the amount and rate of limb loading, which places greater stress on the ACL. Our rehabilitation specialists use positive feedback, extrinsic cueing, mirrors, and demonstrations of desired techniques to change these habits.

Typical verbal instructions to athletes include using greater flexion with their operated knee to soften and quiet their jump landings. A flexed leg posture reduces the rate and amount of landing forces, helping to protect against subsequent ACL injuries. Further, greater knee flexion improves the line of pull of the quadriceps and hamstrings to work synergistically with the ACL to limit anterior translation of the tibia on the femur.

We also emphasize vertical alignment of the hip, knee, and ankle during landing while keeping the head up and bottom down. This prepares athletes for the posture needed in a sports environment. Combined, these tips result in softer landing patterns, greater peak knee bend during landing, and a desirable pattern of thigh motor control.

As athletes progress in BRIDGE training, we provide less instruction and feedback. Instead, we promote intrinsic cues so they become aware of what it feels like to complete the desired techniques. We’ll encourage them to focus on the way impact affects their feet and legs or judge their body position during landing.

At this point in rehab, we typically add external elements and distractions—like catching or heading a ball—while instructing the athlete to maintain desired landing techniques. For instance, we had a volleyball player practice passes, hitting, and serving while set up at 20 percent bodyweight support. These sport-specific activities can make training a fun challenge and help promote lasting movement patterns.

Sessions generally conclude with a five-minute walking cool-down off of the BRIDGE so athletes can acclimatize to normal bodyweight load. To end the treatment, we complete static stretching of the major lower-extremity muscle groups.

We tend to prescribe the BRIDGE for eight weeks and start with no more than 30 percent unweighting. Each week, we use two treatments, with at least a 48-hour break in between to ensure proper recovery. The amount of unweighting is reduced by about 10 percent every two weeks.

TESTING IT OUT

From our testing and experience using the BRIDGE in patient care, we believe the ideal time to start training with it is at three to four months after ACL reconstruction surgery. This is typically when athletes are cleared to start running, jumping, and cutting drills in preparation for return to sport. We have some confidence in this recommendation from the success found in our initial proof of concept trial completed this year.

We started the trial by screening more than 30 athletes who were between six and 48 months post-ACL reconstruction and had been cleared for return to normal activities. We invited 19 athletes to participate in the study who had either performed below average in their clinical outcome scores or showed poor biomechanical performance during jump landing, as we felt they would benefit most from intervention. On average, they were 18 months out from surgery.

The two arms of the study were jump training with or without bodyweight support. We used a double-blind randomized trial design of two training sessions each week for eight weeks. The trial started with 30 percent bodyweight support, and the level of support was reduced every two weeks—from 30 percent to 20 to 10 to none. Both groups focused on sports-specific training with high intensity.

The bodyweight support participants performed more repetitions throughout their training than the non-bodyweight support group to help encourage improved motor learning. For instance, the first two weeks had a target of 120 to 200 contacts per treatment session. The training volume peaked in weeks three and four when the target was 250 to 500 contacts per session, and it decreased to 200 to 350 contacts in weeks five and six. Both groups had the same training volume of 120 to 200 jumps over the final two weeks.

Many jump training programs used in healthy, uninjured athletes last for six weeks, but an additional two weeks was needed in our trial so the athletes could transition to jumping under different bodyweight conditions. Also, since we chose athletes who had difficulties in landing, adding two more weeks to ensure success seemed a reasonable adjustment to the treatment length.

Overall, the BRIDGE training group saw comparable results to the group that didn’t use the device in areas like self-reported knee functional ability scores, altered landing styles, increased knee flexion, and reduced peak ground reaction forces. However, the BRIDGE participants achieved a greater safety advantage, as the relative risk of swelling within the knee joint from training was four times greater in the standard group than the BRIDGE group.

These benefits were sustained at the retention test completed two months after training. From this, we concluded that the results would last for at least a season’s worth of sports activity.

The enhanced safety factor seen with the BRIDGE athletes in the clinical trial suggests that we should be comfortable taking the next step with testing. This would include implementing the system four months post-ACL reconstruction as a means to smoothly transition athletes into practice.

We are confident that the BRIDGE training protocol will continue to provide a safe opportunity for additional training and early implementation of jumping practice for the recovering knee. The changes induced with the BRIDGE should help address current shortcomings in outcomes in ACL rehabilitation. We also hope to reduce risk of second ACL injury and improve rate of return to preinjury levels of sports participation.

This article first appeared in the April 2017 issue of Training & Conditioning.

To view the references for this article, go to: Training-Conditioning.com/References.

Sidebar:

COMMERCIAL APPEAL

Development and prototyping for the University of Montana’s Bodyweight Reduction Instrument to Deliver Graded Exercise (BRIDGE) has been ongoing for five years. Montana’s Office of Technology Transfer recently applied for a patent for the current setup.

Although still in prototype phase, the university is also seeking commercial partners to consider licensing agreements and clinical development of the BRIDGE system. In a few years, it may be packaged for distribution to outside entities.

We are optimistic about the BRIDGE’s commercial potential. The closest comparable system on the market now utilizes a motorized device mounted on a track in the ceiling that shadows the patient as they move. It costs hundreds of thousands of dollars, and the speed of movements used in jump retraining protocols exceeds the limits proposed by its manufacturers. We foresee the BRIDGE system being a less expensive, more effective alternative.

Filed Under: Injury prevention

Tendon Adaptations

July 11, 2017 by

By Chris Beardsley

Chris Beardsley  graduated from Durham University with a Masters Degree in 2001. He since contributed to the fields of sports science and sports medicine by working alongside researchers from Team GB boxing, the School of Sport and Recreation at Auckland University of Technology, the Faculty of Sport at the University of Ljubljana, the Department of Sport at Staffordshire University, and the College of Health Solutions at Arizona State University. He is also a Director at Strength and Conditioning Research Limited 

For more great information regarding strength and conditioning follow Chris on Twitter and Instagram

Tendons tend to get most attention when they are injured.

This is unfortunate, as tendon stiffness is likely a key factor that determines rate of force development (RFD), which is a key component of explosive strength.

In other words, it is not just physical therapists who need to know about tendons. Strength coaches will also benefit from giving tendons some thought!

In rehabilitation programs, eccentric loading is popular for producing tendon adaptations. However, contraction type is not actually very important for producing increases in tendon stiffness.

On the other hand, the load does have an effect.

Heavier loads produce greater changes.

Load is not the only factor that is important for producing tendon adaptations.

Indeed, plyometrics can involve quite large loads (especially if high boxes are used for drop jumps), and plyometrics are often used to promote “stiffness” and “energy storage” in athletes.

But while plyometrics are a great training method, they probably don’t achieve their beneficial effects by producing substantial increases in tendon stiffness.

Short duration, repeated loading types like plyometrics are not able to increase tendon stiffness by very much. On the other hand, heavy loads corresponding to around 3 seconds of time under tension are optimal.

Taking these studies together, it seems likely that conventional, heavy strength training is optimal for producing tendon adaptions, including increased tendon stiffness.

And as we saw recently, increased tendon stiffness will likely then enhance rate of force development.

On the other hand, lighter loads, ballistic strength training, and plyometrics are unlikely to achieve the same results, although they are probably essential for increasing maximum contraction velocities.

Filed Under: Injury prevention, strength training

Monitoring Athletes

July 5, 2017 by

This article was provided by Training and Conditioning

By: Ryan Curtis MS, ATC, CSCS, Associate Director of Athlete Performance and Safety, Korey Stringer Institute

Athlete monitoring is becoming standard practice for maximizing player performance,reducing injury risk, and optimizing competition readiness. For high-performance programs, monitoring load-performance and load-injury relationships are essential for providing insight into how athletes are responding to stresses incurred during and outside of training and competition. Ultimately, how an athlete performs is impacted by the accumulation of stress and the efficacy of training. Therefore, it is important to evaluate stress imposed during training and match sessions, as well as, the strain incurred by each athlete. Understanding the difference between stressors (i.e., intense exercise, heat, cold, altitude, etc) and the strain (body’s response to stress) experienced by a biological system (i.e., human body) is essential to monitoring and manipulating parameters important for athlete preparation. Other benefits to monitoring athletes beyond determining training efficacy, such as gathering scientific explanations for changes in performance or injury risk, enhancing coach and practitioner confidence when manipulating training loads, and boosting athlete-coach- practitioner relationships all contribute to the efficacy and buy-in of monitoring practices. There are four main purposes for monitoring athletes; optimizing readiness, ensuring proper prescription of stress and recovery (periodization), reducing injury risk, and monitoring safe and effective return to play programs (Figure 1). While each of these purposes are important, emphasis and priority placed on these purposes will vary based on team’s load monitoring philosophy.

 

Monitoring Training and Competition Load

When monitoring the dosage of stress imposed during training or competition, practitioners and scientists typically refer to training load. Load is simply the product of duration and intensity of activity. Training load can be further described as either external (work imposed independent of internal strain) or internal (response of the body to external load), as shown in Figure 2. The association between external and internal load can give great insight into the status of the athlete (i.e., fresh vs. fatigued). With advancements in wearable technology, monitoring of athletes’ external load has received a great deal of attention. Specifically, global positioning systems (GPS) capabilities have allowed ease of monitoring parameters such as distance, time, and efforts in multiple velocity zones (0-7.2 km/h-walk, 7.2-14.4 km/h-jog, 14.4-21.6 km/h-run, >21.6 km/h-sprint) used for tracking running performance. GPS-enabled devices use positional differentiation to calculate distance and acceleration.

Beyond quantifying the intensity distribution of session types (i.e., match, training, conditioning, etc.), GPS metrics are often reported as aggregate measures such as high-intensity running distance (distance >14.4 km/h), number of sprints (efforts > 25.2 km/h), and average speed (meters per minute). However, GPS technology is limited in its ability to detect external movement beyond positional change and additionally, has serious limitations with tracking movement indoors. This leaves monitoring of indoor team sports such as basketball and volleyball at a disadvantage. However, modern player tracking technology typically uses integrated inertial sensors such as accelerometers, gyroscopes, and magnetometers to help quantify stress imposed in all three planes. Calculated metrics such as PlayerLoad TM (Catapult) from integrated inertial sensors have a strong relationship with running performance measures such as total distance covered, while additionally estimating general load on the body and therefore stress from actions such as tackling, accelerations, decelerations, changes of direction and collisions. Due to the inertial movement sensors ability to detect magnitude of movement (i.e., g-forces) in 3 planes of motion, a single arbitrary unit of load might give a more accurate display of total stresses incurred during activity.

Both physiological and psychological measures such as heart rate, lactate, muscle oxygen, and rating of perceived exertion (RPE) can be used to monitor loads sustained internally. Of the numerous methods of objectively quantifying internal load, heart rate derivatives such as time in heart rate zones, expressed as percent of maximum heart rate, and weighted scores such as training impulse (TRIMP) are most commonly used. These measures allow categorization of training stress into relative zones such as high, moderate, and low. Of the methods to quantify internal load by subjective means, using RPE and session RPE (sRPE) are by far the most common. sRPE is simply the product of session duration and the athlete-reported RPE post-training/competition. This subjective measure has shown good association with external running performance measures.

 

Monitoring Readiness, Recovery and Wellness

Monitoring readiness, recovery, and wellness requires both physiological and psychological assessment in order to gain understanding of an athlete’s true state. These assessments could be as simple as asking the athlete “how do you feel?” or as complex as using microtechnology (telemetry or photoplesthsmography) to ascertain the variability in heart beat to beat intervals during rest or sleep. Monitoring the response to training and/or competition gives the practitioner great insight into individual dose-response relationships and helps to promote precision with recovery practices. For example, if an athlete is excessively fatigued, coaches may prescribe a recovery session or reduce training load for that day. Current practices in monitoring athlete readiness prior to activity include heart rate-based autonomic nervous system assessment (i.e., heart rate variability, HRV; heart rate recovery, HRR), neuromuscular function tests (i.e., counter movement jump, CMJ; reaction tests), and wellness questionnaires/assessments (i.e., stress, fatigue, soreness, anxiety). More extensive monitoring such as biochemical/immunological/hormonal assessment (i.e., blood, saliva, and urine-biomarkers) and psychological inventories (i.e., Profile of Mood States, Sport Anxiety Scale, Rest and Recovery Questionnaire) can give insight into overtraining or maladaptation if assessed longitudinally.

Limitations in Athlete Monitoring

While there is much to gain from monitoring athletes, there are several limitations that must be considered when implementing a monitoring program. Monitoring athletes does not always require large funding sources (i.e. subjective markers of training load combined with wellness reporting), however analyzing data does require time, manpower, and experience/skill. With vast amounts of data pouring in from sometimes multiple technologies and questionnaires, persons experienced in data management and analysis are often needed derive meaning and interpretation beyond simple descriptive reporting. In addition, attaining buy-in from athletes and coaching staff is sometimes difficult if immediate returns are not seen. Regarding technological limitations, very little validation and reliability testing is conducted by parties outside of the technology manufacturer. With that, the way in which raw data is processed and filtered varies by manufacturer and software version. Because software updates can occur quite often and the way in which data is filtered and reported is changed, validity and reliability of the device will change concurrently. This has severe implications when determining the precision and consistency of measurement longitudinally.

Taken together, programs must weigh the benefits and limitations of athlete monitoring together. Without structure in data management, plans for implementation based on data analysis, and athlete-coach buy-in, monitoring athletes can be a waste of time and resources that could be used to gain advantage elsewhere. However, if care is taken in promoting, structuring, and implementing a purposeful and practical monitoring program, teams stand to gain a great advantage in maximizing the health and performance of their athletes.

Filed Under: Injury prevention

Hamstring Injuries

April 26, 2017 by

By Chris Beardsley

Chris Beardsley  graduated from Durham University with a Masters Degree in 2001. He since contributed to the fields of sports science and sports medicine by working alongside researchers from Team GB boxing, the School of Sport and Recreation at Auckland University of Technology, the Faculty of Sport at the University of Ljubljana, the Department of Sport at Staffordshire University, and the College of Health Solutions at Arizona State University. He is also a Director at Strength and Conditioning Research Limited 

For more great information regarding strength and conditioning follow Chris on Twitter and Instagram

Hamstring strains are one of the most common injuries in team sports, and they lead to substantial amounts of lost playing and training time. They are also very prone to recurrence. Once an athlete has suffered one hamstring strain, they are much more likely to be injured again.

Consequently, strength coaches are often tasked with reducing the number of hamstring strains that their athletes incur.

The Nordic curl is a commonly-used exercise for preventing hamstring strains, and recent analysis suggests that it is very effective.

However, it is not clear exactly how the Nordic curl produces its beneficial effects.

As an eccentric exercise, it increases fascicle lengths, and short biceps femoris fascicles are a risk factor for hamstring strains. Changes in fascicle length could therefore be a key mechanism.

However, some conventional (eccentric-concentric) exercises can cause similar (or perhaps slightly smaller) increases in fascicle length. Yet, to date, these exercises have not been identified as having injury-prevention potential.

So why do some conventional (eccentric-concentric) exercises produce similar (or perhaps slightly smaller) changes in fascicle length to the eccentric-only Nordic hamstring curl?

It is often assumed that only eccentric-only training can increase fascicle length.

In reality, both eccentric loading and training at long muscle lengths can independently increase fascicle length.

Indeed, eccentric-only training at long muscle lengths produces even greater increases in fascicle length than eccentric-only training at a moderate muscle length. So eccentric-only loading and training at long muscle lengths are additive.

This dual mechanism for improving fascicle length probably explains why the (eccentric-only) Nordic curl, which produces a peak contraction at a moderate muscle length, produces similar changes in muscle fascicle length to the conventional (eccentric-concentric) 45-degree back extension, which produces a peak contraction at long muscle lengths.

However, things are perhaps not entirely this simple, as the 45-degree back extension is a hip extension exercise, while the Nordic curl is a knee flexion exercise.

So the 45-degree back extension probably also produces smaller mechanical loading on the hamstrings, because it shares some of the work of hip extension between the hamstrings and the other hip extensors, including the adductor magnus and the gluteus maximus.

Filed Under: Injury prevention

  • « Previous Page
  • 1
  • 2
  • 3
  • Twitter
  • Facebook
  • linkedin

© Copyright 2025 Athletic Performance Toolbox

Design by BuzzworthyBasketballMarketing.com

Privacy Policy